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We study, for polynomials in many variables, the relations between the complex
and the real sup-norms, and we give estimates involving the leading coe(ficients. We
consider the case when the polynomial has a given degree, or some concentration
at a given degree. The present paper is a contribution to a general field of investiga­
tion: For polynomials in many variables, what are the estimates independent of the
number of variables 0 .. 1993 Academic Press. Inc

In the sequel, we let

( 1)

with CI. = (CI.!, .•• ,Cl. N ), ICl.I =CI.) + .. , +Cl. N , be a polynomial of total degree at
most k, in several variables (x l' ... , XlV). We consider here two problems
related to the sup-norm of the polynomial: comparing the sup-norms in the
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real and in the complex cases, and finding bounds from below for this
sup-norm when only certain coefficients of the polynomial are known,
again in the real and in the complex cases.

We are interested here in estimates independent of the number of
variables, as was already the case in Beauzamy, Bombieri, Enflo, and
Montgomery [3]. As we wil1 see, the complex and real cases require very
different techniques, the former being much easier. Also, the estimates will
sometimes be different, depending on whether the polynomial is
homogeneous or not.

We start with the second problem, which might be called "reducing the
polynomial," for we ask whether the knowledge of certain important terms
(the leading ones) is enough to get a lower estimate on the sup-norm of the
whole polynomial.

I. REDUCING THE POLYNOMIAL

Let P be written as in (I). We call leading terms those which contain
only one variable, raised to the power k. Denoting by ai' I = I, ..., n, the
leading coefficients, we write the polynomial as

(2)

where in the last terms all f3's with !f3! = k have at least two non-zero
components.

Our concern in this section is the following: If we know only the quan­
tity L:~ lall, with no information at all on the rest of the polynomial, is this
enough to get some information about its sup-norm? To distinguish in this
way some terms which are of special importance is an idea frequently met
in Partial Differential Equations. For instance, the Sobolev norm in the
space HK(Q) is defined as

Ilfll = (I IIDYI12) 1/2,

1,1 <; K

where 11·112 is the usual L 2 norm, and D' = D~' .. , D~', D} = o/ex). When
the domain is bounded, the above norm is equivalent to the norm obtained
by taking only LI'I ~ K: the number of terms has been reduced.

The same idea holds for a differential operator, with constant coef­
ficients, on a bounded domain. We define
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Then H6rmander's inequality states that, for any iX, there is a positive
constant C~ such that for any function tP in the test class C;-,

which, once again, allows one to reduce the number of terms in the
differential operator.

Regarding the leading coefficients, we have, in the complex case:

THEOREM l.l. Let P he a polynomial of total degree k, with complex
coefficients, v,'ritten as in (2). Then

N

I la,1 ~ max IP(e'II', ...,eiO")I.
I 01 . ..• O"E [O.2n]

This theorem was proved, in the case of homogeneous polynomials, by
Aron and Globevnik [1], using the multilinear form associated to the
polynomial. The proof we present now is quite elementary, and is valid also
for non-homogeneous polynomials.

Proof Let A be the constant term in the polynomial. We may of course
assume that this coefficient is real and positive.

For 1= 1, ... , N, we write the leading coefficients in the form a,=p,e iO
,.

Let now XI' ..., X N be independent random variables, defined on a
probability space Q, with values on the unit circle. More precisely, each X,
takes the k values e" i(O, + 2nm I/k, for m = 0, ..., k - l. Each value is taken with
probability 11k. Let E be the expectation. We have

and E(X~) = ° if j < k. We now consider the probability space
Q[ x ... x QN; let Ej be the expectation on Q,. We get

N N

E[ ... ENP(X., ... , XiV) = I la,1 + A ~ I la,l,
I I

which shows that

N

I jail ~ max IP(e il
\ ... , em')I,

[ Ill .... O,E [O.2nl

as we announced.
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We remark that even more is true, in the complex case. Namely, let's
write the polynomial P in Theorem 1.1 as P = Po + P J + ... + Pk, where
each Pi is j-homogeneous. Further, write

N

P,(x1,···,xN)=Ihilxj+ I hfjx1',· ..,x~',
, Ifil ~ i

where each (J has at least two non-zero components. Applying Theorem 1.1
to Pi' we get

N

I Ihill ~ max lPi (e ill', ...,e iO')1 ~ max IP(eiO', ... ,eill')I,
I~ 1 II, .... IINE [0.2n] II, •..• II,,' E [0.2n]

by Cauchy's inequality.
We now turn to the case of real coefficients and real variables. The

techniques will be quite different, and, as we will see, a result independent
of the degree cannot hold anymore. We start with homogeneous polyno­
mials.

THEOREM 1.2. Let P he a homogeneous polynomial of degree k, written
as in (2). Then

N

I la,1 ~ 4k 2 max IP(x" ..., x",,)I·
1 " •... XNE[O.']

Proof First we choose a subset L of {I, ..., N} such that all the a/s,
IE L, have the same sign and satisfy

(3)

We may assume that L = {I, ..., m}, for some m ~ N, and that a, > °for
I ~ m. We give the value °to all variables x, for I> m, and we just write
P(x" ..., x",) instead of P(x" ... , x N). Finally, we normalize P, taking
'2,';' a,= 1.

Let now X" ... , X", be independent random variables, with values in
{O, I }, and with the same law: they take the value 1 with probability t, the
value °with probability 1 - t, where t E [0, I] will be chosen later.

For every a, every I, EX~' = EX, = t. Let us denote by c(a) the number
of non-zero components in a, and define

c(ex)= 2 c((); I = k
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Let's call S( t) the above polynomial, and put 5(x) = S( (x + I )/2), for
- I ~ x ~ 1. Using Markov's inequality (see for instance Rivlin [10,
p. 105]), we get

max /S(t)/ = max 15(x)/
r E [0. J ] X E [ - 1. J ]

I _
~ k 2 _ max IS'(x)1

<E [ 1. J]

I
~-ko max IS'(t)1

2 • IE [0. J ]

This shows that there is a choice of values x" ..., X m in {O, 1} such that

I
IP(x" ..., xm)1 ~ 2k 2 '

and taking (3) into account, we finally obtain

as we announced.

Remark. We observe that homogeneity is not really necessary. The key
to the proof is the fact that the polynomial S(t) should start with t. This
holds as soon as the polynomial P, written in canonical form (2), contains
no simple terms, except the leading ones. Precisely, the same proof works
if, in P, all coefficients ap are 0 if c(P) = I, IPI ~ k - I.

How good is the estimate given by Theorem 1.2? Let C k be the best
constant, that is, the smallest constant such that the inequality

N

L la,1 ~ C k max IP(x J , ... , xN)1
J 'I E [ 1.1]

holds for all homogeneous polynomials of degree k, in many variables.
We now give an example, showing that Ck ~ k, at least when k is a power
of 2.

64074 ~-s
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EXAMPLE 1.3. We define by induction a sequence of polynomials by
pdx j , x 2 )=xi-x;. Assume p,,(x l , ••• , x 2") has been defined. Then put

Then, for every n, p" is a polynomial of degree 2", with 2" variables, and

when x1, ...,x"E[-I,I].

The sum of leading coefficients is 2", which shows that C 2" ~ 2".

Therefore we have the estimate

We do not know the exact order of magnitude of Ck . There is an important
case, however, in which C k is proportional to k:

THEOREM 104. Let P he a homogeneous polynomial of degree k, with real
coefficients and real variables, written in canonical form (2). Assume that all
coefficients ali have the same sign. Then

N

I!a,I:(D k max IP(x1, ... ,xN)I,
I q .... 'N E [0. I 1

where

thus satisf.'ving

2(k+ I )(2k + I)
D k :( k-I ;

Proof First, we make the same reductions as in Theorem 1.2: we
assume that for I = I, ... , m the at's are positive and satisfy 2.:.7' a, = I. Since
the proof is trivial if all other coefficients are also positive, we assume them
to be negative, and we write

P(X 1 , ... , x m ) = L a,x~ - L alixli l ••• x~;',
I Ii

where all the aI/s are positive.

(4)
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Fix now i. > 0 to be chosen later, and put

. (k_I)).2
e(). ) = 2 " , .

(k -k)i,- +(k"+k-l)i.-+3ki.+2

We now have two cases:

-- if IP( 1, ... , 1)1 ~ e( A), our result is proved,

- otherwise, it means that

We need a lemma:

187

(5)

(6)

LEMMA 1.5. Fix A> O. Under the constraints PI + ... + 13 m = k,
max PI < k, one has

Proof of Lemma 1:5. The minimum of the function ().x + 1Hi,y + 1)
under the constraints x + y = k, 0 ~ x ~ k, 0 ~ y ~ I, is reached at x = 0,
y = k, or at x = k, y = 0, and is )'k + I. This shows that

and so on with subsequent terms.
But the minimum of i).x + 1Hi.y + 1) under the constraints x + y = k,

O~x~k-l, O~y~k-I, is reached at x=O, y=k-l, or at x=k-l,
y = 0, and its value is (). + I H),k - i. + 1). Since in each term at least two
of the P,'s are non-zero, the lemma follows.

We now come back to the proof of the theorem. By (6) and Lemma 1.5,
we have

r ... fl Pix;, ..., x~) dX 1 .. ·dxm
o 0

I I
= )'k + I - 'i aIi (API + 1) ... UP m + 1)

1 I +e(A)
>---- -------
"'" i.k + I (i. + I Hi.k - i. + I )

~ e(A),

by the choice of e( i. ).
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This shows that, in this case also, for every Ie> 0, there are points
x I' ... , x", III [0, 1] such that

from which the theorem follows, taking the maximum of s(le) over all Ie> O.

We now turn to polynomials with real coefficients, but which are not
necessarily homogeneous. There is a considerable quantitative difference
from the homogeneous case: the constant C k must be exponential. Indeed,
this is already the case with polynomials in one variable: consider the
Tchebycheff polynomial

k ( (2J+l)7r)
Tdx)= \I x-cos 2k '

normalized so as to have leading coefficient 1. Then

1
max ITdx)I=2k-I'

< E [0. I ]

In fact, dealing now with many variables, we will lose exactly the same
factor 1/4k2 as we already did in the homogeneous case.

THEOREM 1.6. Let P be a polynomial of total degree k, in many
variables, with real coefficients, written in canonical form (2). Then

N

Lla,I~2k+2k2 max IP(xl, ...,xN)I.
I XI .. • XNE [ -1.1]

Proof Let A be, as before, the constant coefficient P(O, "', 0). We have
to distinguish between two cases, depending on the size of IA I. First, if

1 N

IA I;?; 2k + 2k 2 L la,l,
I

our estimate is proved. So we now assume the converse inequality. We
make the same reductions as in Theorem 1.2 above, and, assuming
"L,7' a, = 1, we get

(7)
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Fix now s E [ - I, I J, and for I = I, ..., m, consider independent random
variables XI' with values in the set {O, s}, and all with the same law: the
probability of the value 0 is 1 - t, the probability of the value s is t. Then
the contributions of the parts of P of respective degrees k, k - 1, ... ,0, give

E I ···EmP(X1,···,Xm)

=Skt+Sk(A2.kt2+ ... +Ak.ktk )

+ Sk - I (A t.k _ 1 t + ". + A k __ t.k 1 tk - I )

+A,

with

A".•,= Lap.
Ifll~"

c(PI = u

The coefficient of t is

I(S)=Sk+A1,k_ISk - I + ... +AI,/s/+", +Al,o,

which is a polynomial in s of degree k, with leading coefficient 1.
For such a polynomial, there is always (see Rivlin [10, p. 67J) a point

S E [ - 1, 1J such that

1
I/(s)1 ~ 2k- I'

Fix this s, and put ).=/(s). Then E l ... EmP(XI, ..., X m) is now a polyno­
mial in t, of the form

E 1 ···EmP(X j , ••• , Xm)=).(t+B2t2+ '" +Bktk)+A.

Reasoning as we did in Theorem 1.2, we find that there is a value of t such
that

which shows that there are points (x I' ... , X m) in [ - 1, 1J for which

1 lIN
IP(x l , •••, xm)l ~ k22k - A ~ k 22k + 1~ k22k + 2 L lall,

I

which proves the theorem.
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Remark 1.7. One can wonder if a result similar to those of
Theorems 1.1 to 1.6 holds if one replaces the sum of leading terms, L~ la,l,
by the sum of all terms, La la"l, that is, the II-norm of the polynomial,
written as in (1). Namely, is there a constant Cic, independent of the
number of variables, such that

L la,,1 ~ Cic IIPllx, (8)

where 11·11 co is any of the sup-norms we have considerd before? Such a
result would imply (at least qualitatively) all the previous ones. In the

one-variable case, it holds with Cic = Jk + 1.

In the many-variables case, it holds for k = 1 (with C; = 1), but fails for
any k ~ 2: this was known to Littlewood [9], as a consequence of his
theory on continuous bilinear forms on Co x Co. Another proof is as follows.

By a result of Bennett, Goodman, and Newman [4], there is a N x N
matrix A = (a i. j ), with entries ± 1, such that

where IIAllop is the operator norm of A from I~N) into itself, that is,

IIAllop = max{ IIAXI12; IIXI12 = I},

with

Set Po(.\: I' ... , XN) = L~i~ I a,.;xixi· It has degree 2, and with X as before,

where <.,.) is the usual scalar product in 12 ,

So we get

where c is some absolute constant. But if Ix) ~ 1 for j = 1, ..., N, then
II XI12 ~ ft, and

a contradiction with (8), since IPol 1 = Li.j lad = N 2
•
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Remark 1.8. In Beauzamy, Bombieri, Enflo, and Montgomery [3],
Lemma I.A.3 shows that

with constants independent of the number of variables. Of course, from
Euler's formula follows

'" )i oP IIIIPL ~L II~.,
I (X, x

but the same polynomial as before shows that the converse inequality, for
the L f -norm, is not possible with a constant independent of the number
of variables, since

We now turn to the comparison between the sup-norm in the real and
in the complex cases.

2. COMPARISON BETWEEN SUP-NORMS IN THE REAL

AND IN THE COMPLEX CASES

Let P(x h"" X",) be as before a polynomial of degree k, in many
variables, with real coefficients, written as in (I). We want to compare the
two quantities

IIPllf.R = max IP(x" ..., x",)I,
'I ..• x,· E [ . 1.11

IIPIIx,( = max IP(zl' ... , z",)I;
lOll ~ ~ 1=,,1 ~ I

the latter being obviously larger than the former, we are interested In

estimates in the other direction. We obtain:

THEOREM 2.1. For any polynomial P of degree k, with real coefficients,

IIPII xR ~ Ilk IIPIr f .(",

where /-lk = 2/( (2 + ,/2)k + (2 - ,/2)k).
We first need a lemma:
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LEMMA 2.2. Let P he any polynomial of degree k, in n variables. Then,
for any). E [0, I],

max IP(zl, ... , zN)1 ~ ),k max IP(ZI' ... , zN)I.
I=tl ~ .. ~ I=NI ~;. I=tl ~ .. , ~ I=NI ~ I

Proof of Lemma 2.2. Assume max 1=,1 ~ 1 IP(z l' ... , Z,'1)1 = 1. Let Z1, ... , Z,'I

be points on the unit circle such that IP(z I' ... , zN)1 = 1. Consider
f(z) = P(zz I' ... , ZZN), where Z is a complex number. Then f is a polynomial
in one complex variable, of degree k. By a classical result for polynomials
in one variable (see for instance A. Durand [6, Theorem 3.7, p. 18]),

max If(z)1 ~)/ max If(z)1 ~ Jeklf( 1)1 = Jek,
1=1 ~ ;. 1=1 = 1

which shows that there is a z, Izi = Je, such that

and proves our claim.

We now prove the theorem. We assume IIPII-x.c=1. Using Lemma 2.2,
we find points Zl, ... , ZN, with Iz)1 = I/fi, such that

\P(ZI' ... , zN)1 ~(fir IIPII".c·

We write Zj = cj + id" where c) and d, are real. We now look at

<p(t)= L a,(c1+tdr!",,,(cry+tdNY\
1'1", k

which is a polynomial of degree k in t, satisfying II 1ft II ex ~ I/fi k.

A result of P. Erdos [7, Theorem 7, p.1175, and Corollary, p.1176]
shows that if <p is a polynomial of degree k, with real coefficients,

(9 )

where Tk is the Tchebycheff polynomial of degree k. Therefore we get

with

2
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So there exists a t in [ -1, 1] such that

I L a2{cJ+tdl)21"'(CN+tdN)"I~!J.k'
121".k

193

Since for every j, cj + tdj belongs to [ -I, I], our theorem is proved.
For homogeneous polynomials, another proof can be given, using the

multi-linear functional associated to the polynomial. It leads to estimates
which are slightly weaker, but the proof is much simpler.

Let P(zJ' ..., ZN) be an homogeneous polynomial of degree k. The
associated k-linear form A, from en x ... X en into e is defined by

A(Z(I) Z(k)) I" p(~ Z(j)), ..., = k! 2k L. (;J'" (;k .L. (;; ,
'J~ ± J .I~ 1

where each Z stands for (z I, ... , Z N)' A proof of the fact that A is k-linear
can be found for instance in Dineen [5]. No matter whether the variables
are rea] or complex, the same computation shows that

e
max IA(Z(1I, ..., Zikl)1 :(-k

l
max IP(zl' ... , zN)I,

Z!JIEC'.IIZlillI".1 . 1=11"'1

where IIZII = (L~ 1=,1 2
)1

/
2.

Now, we get, writing Z = X + iY in eN,

max IP(zJ' ..., zN)I:( max IA(Z(I), ..., Z(k))1
1=,1"'1 IIZU'II'" J

:(2k max IA(X(I), ...,X(k))1
IIXIJ11I".1

which gives a constant (2k )k/k!, slightly worse than that of the previous
proof.

Remark 2.3. Theorem 2.1 was stated only for polynomials with real
coefficients, because its proof uses Erdos' estimate (9), which was proved
only for such polynomials. The general question of a sharp bound

valid for all polynomials of degree k, with complex coefficients, remams

640742-6
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open. An interesting advance in this direction has been made by R. Freund
and S. Ruscheweyh [8].

Remark 2.4. In the one-variable case, the equivalence between the
complex and real sup-norms is obtained considering the quantity

max min IP(z)l,
O<;;J<;; I 1=1 ~J

which is smaller than the norm IIPllx,R, and is shown to be equivalent to
the norm IIPII",.c (see A. Durand [6, p.20, Theorem 3.10]). This stronger
equivalence cannot hold in the many-variable case.

Consider indeed the simple polynomial P(z I' ... , Z N) = z I + .,. + Z N'

Then IIPII ex.C = N, and

max min la 1e iOI + ... + aNeillNI
al •... a.,·E [0.1] IJI ..... ON

(J
2n J2n Ii ill, 2 de I de N) 1/2

~ max ... lale' 1+ ... +aNe 'I -2~'" 2~a, .... aNE[O.I] 0 0 " "

~ max (ai + ... + a~)1/2
al·.... aNE[O.I]

=-/N,
which proves our claim.

3. REAL VS COMPLEX SUP-NORMS FOR POLYNOMIALS WITH

CONCENTRATION AT Low DEGREES

Recall that a polynomial P, with N variables, of degree n, written In

canonical form

has concentration d (0 < d ~ 1) at degree k if

I laal? d L la,l·
1'1 <;;k 1'1 <;n

(10)

( 11 )

In the previous section, the estimates we gave involved the degree of the
polynomial. In the present section, we consider the following question: Can
we obtain similar estimates for the ratio between the complex and the real
sup-norms if we do not take into account the degree itself, but only the
concentration at low degrees, that is, the data d and k? We still want, of
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course, estimates independent of the number of variables. The reader may
consult Beauzamy, Bombieri, Enflo, and Montgomery [3] for related
definitions and results.

For the present problem, the answer will be that everything depends on
the way this concentration is measured. So before giving the main theorem
of this section, we give an example showing that the concentration cannot
be measured the usual way, that is, using I,-norm, as defined in (11).

EXAMPLE 3.1. Consider for every N ~ 1 the family of polynomials

P ( ~ ~ ~ ) __1 P (~ ~ )+~(~2 I)N
N "', ""I' ... , ""N - N2 0 "'I' ... , .. ,~. 2N .... - ,

where Po is the degree 2 polynomial introduced in Remark 1.7; it has
coefficients ± I. Therefore

and since 1(1/2N )(z2-1 ),"1 = I, the polynomial PN has concentration 1/2 at
degree 2.

We have seen in Remark 1.7 that

Therefore, giving to z the value i, we see that

though

which shows that a result independent of N cannot exist in this case.

Such a statement will be possible if, instead of the I,-norm, we use the
L x -norm to measure the concentrations. With d, k as before, with P
written as in (10), define
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which is the part of P of degree at most k. Then we say that P has
concentration d at degree k, measured in Lx-norm, if

Then we have:

IIP~II x,c~ dIlPllx,c, (12 )

THEOREM 3.2. There is a constant c(d, k) > 0 such that, for any polyno­
mial P with real coefficients, having concentration d at degree k measured in
L ex -norm, one has

max IP(xl' ..., xN)1 ~ c(d, k) max IP(zl' ..., zN)I.
xIE[~1.1] I=il~l

The constant c(d, k) is independent of the degree and of the number of
variables.

Proof As usual, we normalize P in order to have IIPII y"C = 1. So we get
from (12)

IIP~II.x,c~d.

By Theorem 2.1,

IIP~llx.R ~ dJ.lk'

This means that there are values Xl' .. " X N in [ - 1, 1] such that

( 13)

We now consider

f(z) = P(ZX) , ..., zXN),

which is a polynomial of degree n in one complex variable z. Set

n

f(z) = L biz/.
a

First we observe that

Ilfll.x,c~ IIPllx.c= 1,

which implies

(14 )
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Now from (13) it follows obviously that

I~ hjl ~ dPk'

which implies

197

(15 )(
k )1/2 dL Ihj l2 ~ Pk.
o fi+1

This, together with (14), shows thatfhas concentration d' = dpk/fi+1 at
degree k, measured in Irnorm. By a result of Beauzamy [2], we know that
for such a function, the set {z; If(z)1 < e} can be covered by a union of
disks Dj , with radii r(Dj ) satisfying

L r(D):::; tPd.k(e),
j

where ¢d.k(e) is a function depending only on the data d', k, which tends
to 0 when e -.0; precisely

log log l/fi 2k

¢dde) = C r:. log d"
. logl/y e

where C is a universal constant.
Take now e small enough to get

¢id.de) < 2,

then the set {If(z)1 < e} cannot be contained in the segment [- 1, t],
which means that, for such a choice of e,

max If(t)l~e,
(E [ - I. I]

and proves our result.
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